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Foreword

by Vance Morrison

Kids these days have no idea how good they have it! At the risk of being branded
as an old curmudgeon, I must admit there is more than a kernel of truth in that
statement, at least with respect to performance analysis. The most obvious ex-
ample is that “back in my day” there weren’t books like this that capture both
the important “guiding principles” of performance analysis as well as the practi-
cal complexities you encounter in real world examples. This book is a gold mine
and is worth not just reading, but re-reading as you do performance work.

For over 10 years now, I have been the performance architect for the .NET Run-
time. Simply put, my job is to make sure people who use C# and the .NET
runtime are happy with the performance of their code. Part of this job is to find
places inside the .NET Runtime or its libraries that are inefficient and get them
fixed, but that is not the hard part. The hard part is that 90% of the time the
performance of applications is not limited by things under the runtime’s con-
trol (e.g., quality of the code generation, just in time compilation, garbage col-
lection, or class library functionality), but by things under the control of the
application developer (e.g., application architecture, data structure selection, al-
gorithm selection, and just plain old bugs). Thus my job is much more about
teaching than programming.

So a good portion of my job involves giving talks and writing articles, but mostly
acting as a consultant for other teams who want advice about how to make
their programs faster. It is in the latter context that I first encountered Ben
Watson over 6 years ago. He was “that guy on the Bing team” who always
asked the non-trivial questions (and finds bugs in our code not his). Ben was
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clearly a “performance guy.” It is hard to express just how truly rare that is.
Probably 80% of all programmers will probably go through most of their ca-
reer having only the vaguest understanding of the performance of the code they
write. Maybe 10% care enough about performance that they learned how to
use a performance tool like a profiler at all. The fact that you are reading this
book (and this Foreword!) puts you well into the elite 1% that really care about
performance and really want to improve it in a systematic way. Ben takes this
a number of steps further: He is not only curious about anything having to do
with performance, he also cares about it deeply enough that he took the time to
lay it out clearly and write this book. He is part of the .0001%. You are learn-
ing from the best.

This book is important. I have seen a lot of performance problems in my day,
and (as mentioned) 90% of the time the problem is in the application. This
means the problem is in your hands to solve. As a preface to some of my talks
on performance I often give this analogy: Imagine you have just written 10,000
lines of new code for some application, and you have just gotten it to compile,
but you have not run it yet. What would you say is the probability that the
code is bug free? Most of my audience quite rightly says zero. Anyone who has
programmed knows that there is always a non-trivial amount of time spent run-
ning the application and fixing problems before you can have any confidence
that the program works properly. Programming is hard, and we only get it right
through successive refinement. Okay, now imagine that you spent some time de-
bugging your 10,000-line program and now it (seemingly) works properly. But
you also have some rather non-trivial performance goals for your application.
What you would say the probability is that it has no performance issues? Pro-
grammers are smart, so my audience quickly understands that the likelihood is
also close to zero. In the same way that there are plenty of runtime issues that
the compiler can’t catch, there are plenty of performance issues that normal
functional testing can’t catch. Thus everyone needs some amount of “perfor-
mance training” and that is what this book provides.

Another sad reality about performance is that the hardest problems to fix are
the ones that were “baked into” the application early in its design. That is be-
cause that is when the basic representation of the data being manipulated was
chosen, and that representation places strong constraints on performance. I
have lost count of the number of times people I consult with chose a poor rep-
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resentation (e.g., XML, or JSON, or a database) for data that is critical to the
performance of their application. They come to me for help very late in their
product cycle hoping for a miracle to fix their performance problem. Of course I
help them measure and we usually can find something to fix, but we can’t make
major gains because that would require changing the basic representation, and
that is too expensive and risky to do late in the product cycle. The result is the
product is never as fast as it could have been with just a small amount of per-
formance awareness at the right time.

So how do we prevent this from happening to our applications? I have two sim-
ple rules for writing high-performance applications (which are, not coinciden-
tally, a restatement of Ben’s rules):

1. Have a Performance Plan

2. Measure, Measure, Measure

The “Have a Performance Plan” step really boils down to “care about perf.”
This means identifying what metric you care about (typically it is some elapsed
time that human beings will notice, but occasionally it is something else), and
identifying the major operations that might consume too much of that metric
(typically the “high volume” data operation that will become the “hot path”).
Very early in the project (before you have committed to any large design de-
cision) you should have thought about your performance goals, and measured
something (e.g., similar apps in the past, or prototypes of your design) that
either gives you confidence that you can reach your goals or makes you real-
ize that hitting your perf goals may not be easy and that more detailed proto-
types and experimentation will be necessary to find a better design. There is
no rocket science here. Indeed some performance plans take literally minutes to
complete. The key is that you do this early in the design so performance has a
chance to influence early decisions like data representation.

The “Measure, Measure, Measure” step is really just emphasizing that this is
what you will spend most of your time doing (as well as interpreting the re-
sults). As “Mad-Eye” Moody would say, we need “constant vigilance.” You can
lose performance at pretty much any part of the product cycle from design to
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maintenance, and you can only prevent this by measuring again and again to
make sure things stay on track. Again, there is no rocket science needed—just
the will to do it on an ongoing basis (preferably by automating it).

Easy right? Well here is the rub. In general, programs can be complex and run
on complex pieces of hardware with many abstractions (e.g., memory caches,
operating systems, runtimes, garbage collectors, etc.), and so it really is not
that surprising that the performance of such complex things can also be com-
plex. There can be a lot of important details. There is an issue of errors, and
what to do when you get conflicting or (more often) highly variable measure-
ments. Parallelism, a great way to improve the performance of many applica-
tions also makes the analysis of that performance more complex and subject
to details like CPU scheduling that previously never mattered. The subject of
performance is a many-layered onion that grows ever more complex as you peel
back the layers.

Taming that complexity is the value of this book. Performance can be over-
whelming. There are so many things that can be measured as well as tools to
measure them, and it is often not clear what measurements are valuable, and
what the proper relationship among them is. This book starts you off with the
basics (set goals that you care about), and points you in the right direction with
a small set of tools and metrics that have proven their worth time and time
again. With that firm foundation, it starts “peeling back the onion” to go into
details on topics that become important performance considerations for some
applications. Topics include things like memory management (garbage collec-
tion), “just in time” (JIT) compilation, and asynchronous programming. Thus
it gives you the detail you need (runtimes are complex, and sometimes that
complexity shows through and is important for performance), but in an over-
arching framework that allows you to connect these details with something you
really care about (the goals of your application).

With that, I will leave the rest in Ben’s capable hands. The goal of my words
here are not to enlighten but simply motivate you. Performance investigation
is a complex area of the already complex area of computer science. It will take
some time and determination to become proficient in it. I am not here to sugar-
coat it, but I am here to tell you that it is worth it. Performance does matter.
I can almost guarantee you that if your application is widely used, then its per-
formance will matter. Given this importance, it is almost a crime that so few
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people have the skills to systematically create high-performance applications.
You are reading this now to become a member of this elite group. This book
will make it so much easier.

Kids these days—they have no idea how good they have it!

Vance Morrison

Performance Architect for the .NET Runtime

Microsoft Corporation
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Introduction to the Second
Edition

The fundamentals of .NET performance have not changed much in the years
since the first edition of Writing High-Performance .NET Code. The rules of
optimizing garbage collection still remain largely the same. JIT, while improv-
ing in performance, still has the same fundamental behavior. However, there
have been at least five new point releases of .NET since the previous edition,
and they deserve some coverage where applicable.

Similarly, this book has undergone considerable evolution in the intervening
years. In addition to new features in .NET, there were occasional and odd omis-
sions in the first edition that have been corrected here. Nearly every section
of the book saw some kind of modification, from the very trivial to significant
rewrites and inclusion of new examples, material, or explanation. There are too
many modifications to list every single one, but some of the major changes in
this edition include:

• Overall 50% increase in content.

• Fixed all known errata.

• Incorporated feedback from hundreds of readers.

• New Foreword by .NET performance architect Vance Morrison.

• Dozens of new examples and code samples throughout.

• Revamped diagrams and graphics.
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INTRODUCTION TO THE SECOND EDITION

• New typesetting system for print and PDF editions.

• Added a list of CLR performance improvements over time.

• Described more analysis tools.

• Significantly increased the usage of Visual Studio for analyzing .NET per-
formance.

• Numerous analysis examples using Microsoft.Diagnostics.Runtime (“CLR
MD”).

• Added more content on benchmarking and used a popular benchmarking
framework in some of the sample projects.

• New sections about CLR and .NET Framework features related to perfor-
mance.

• More on garbage collection, including new information on pooling, stack-
alloc, finalization, weak references, finding memory leaks, and much more.

• Expanded discussion of different code warmup techniques.

• More information about TPL and a new section about TPL Dataflow.

• Discussion of ref-returns and locals.

• Significantly expanded discussion of collections, including initial capacity,
sorting, and key comparisons.

• Detailed analysis of LINQ costs.

• Examples of SIMD algorithms.

• How to build automatic code analyzers and fixers.

• An appendix with high-level tips for ADO.NET, ASP.NET, and WPF.

• . . . and much more!

I am confident that, even if you read the first edition, this second edition is
more than worth your time and attention.
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Chapter 5

General Coding and Class Design

This chapter covers general coding and type design principles not covered else-
where in this book. .NET contains features for many scenarios and while many
of them are at worst performance-neutral, some are decidedly harmful to good
performance. You must decide what the right approach in a given situation is.

If I were to summarize a single principle that will show up throughout this chap-
ter and the next, it is:

In-depth performance optimization will often defy code abstractions.

This means that when trying to achieve extremely good performance, you will
need to understand and possibly rely on the implementation details at all layers.
Many of those are described in this chapter.

Classes and Structs

Instances of a class are always allocated on the heap and accessed via a pointer
dereference. Passing them around is cheap because it is just a copy of the pointer
(4 or 8 bytes). However, an object also has some fixed overhead: 8 bytes for
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32-bit processes and 16 bytes for 64-bit processes. This overhead includes the
pointer to the method table and a sync block field that is used for multiple pur-
poses. However, if you examine an object that had no fields in the debugger,
you will see that the size is reported as 12 bytes (32-bit) or 24 bytes (64-bit).
Why is that? .NET will align all objects in memory and these are the effective
minimum object sizes.

A struct (also known as a value type) has no overhead at all and its memory us-
age is a sum of the size of all its fields. If a struct is declared as a local variable
in a method, then the struct is allocated on the stack. If the struct is declared
as part of a class, then the struct’s memory will be part of that class’s mem-
ory layout (and thus exist on the heap). When you pass a struct to a method
it is copied byte for byte. Because it is not on the heap, allocating a struct will
never cause a garbage collection. However, if you start allocating large structs
all the time, you may start running into stack space limitations if you have very
deep stacks (which is very possible with some frameworks).

There is thus a tradeoff here. You can find various pieces of advice about the
maximum recommended size of a struct, but I would not get caught up on the
exact number. In most cases, you will want to keep struct sizes very small, es-
pecially if they are passed around, but you can also pass structs by reference so
the size may not be an important issue to you. The only way to know for sure
whether it benefits you is to consider your usage pattern and do your own pro-
filing.

There is a huge difference in efficiency in some cases. While the overhead of an
object might not seem like very much, consider an array of objects and compare
it to an array of structs. Assume the data structure contains 16 bytes of data,
the array length is 1,000,000, and this is a 32-bit system.

For an array of objects the total space usage is:

8 bytes array overhead
+ (4 byte pointer size× 1000000)

+ (8 bytes overhead + 16 bytes data )× 1000000
= 28 MB

For an array of structs, the results are dramatically different:
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8 bytes array overhead
+ (16 bytes data× 1000000)

= 16 MB

With a 64-bit process, the object array takes over 40 MB while the struct array
still requires only 16 MB.

As you can see, in an array of structs, the same size of data takes less mem-
ory. With the overhead of reference types, you are also inviting a higher rate
of garbage collections just from the added memory pressure.

Aside from space, there is also the matter of CPU efficiency. CPUs have multi-
ple levels of caches. Those closest to the processor are very small, but extremely
fast and optimized for sequential access.

An array of structs has many sequential values in memory. Accessing an item in
the struct array is very simple. Once the correct entry is found, the right value
is there already. This can mean a huge difference in access times when iterating
over a large array. If the value is already in the CPU’s cache, it can be accessed
an order of magnitude faster than if it were in RAM.

To access an item in the object array requires an access into the array’s mem-
ory, then a dereference of that pointer to the item elsewhere in the heap. It-
erating over object arrays dereferences an extra pointer, jumps around in the
heap, and evicts the CPU’s cache more often, potentially squandering more use-
ful data.

This lack of overhead for both CPU and memory is a prime reason to favor
structs in many circumstances—they can buy you significant performance gains
when used intelligently because of the improved memory locality, lack of GC
pressure, and, since structs naturally live on the stack, it encourages a program-
ming model without shared mutable state. Because of these natural limits, you
should strongly consider making all of your structs immutable. However, if you
find yourself wanting to modify fields within a struct that is itself a property on
another class, look at the ref-return functionality described later in this chap-
ter. Using this new functionality in C#7, you can avoid the struct copies that
would otherwise sink performance.
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A Mutable struct Exception: Field Hierarchies

I mentioned earlier that structs should be kept small to avoid spending signifi-
cant time copying them, but there are occasional uses for large, mutable structs:
field hierarchies. Consider an object that tracks a lot of details of some commer-
cial process, such as a lot of time stamps.

class Order

{

public DateTime ReceivedTime {get;set;}

public DateTime AcknowledgeTime {get;set;}

public DateTime ProcessBeginTime {get;set;}

public DateTime WarehouseReceiveTime {get;set;}

public DateTime WarehouseRunnerReceiveTime {get;set;}

public DateTime WarehouseRunnerCompletionTime {get;set;}

public DateTime PackingBeginTime {get;set;}

public DateTime PackingEndTime {get;set;}

public DateTime LabelPrintTime {get;set;}

public DateTime CarrierNotifyTime {get;set;}

public DateTime ProcessEndTime {get;set;}

public DateTime EmailSentToCustomerTime {get;set;}

public DateTime CarrerPickupTime {get;set;}

// lots of other data ...

}

To simplify your code, it would be nice to segregate all of those times into their
own sub-structure, still accessible via the Order class via some code like this:

Order order = new Order ();

Order.Times.ReceivedTime = DateTime.UtcNow;

You could put all of them into their own class.

class OrderTimes

{

public DateTime ReceivedTime {get;set;}

public DateTime AcknowledgeTime {get;set;}

public DateTime ProcessBeginTime {get;set;}

public DateTime WarehouseReceiveTime {get;set;}
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public DateTime WarehouseRunnerReceiveTime {get;set;}

public DateTime WarehouseRunnerCompletionTime {get;set;}

public DateTime PackingBeginTime {get;set;}

public DateTime PackingEndTime {get;set;}

public DateTime LabelPrintTime {get;set;}

public DateTime CarrierNotifyTime {get;set;}

public DateTime ProcessEndTime {get;set;}

public DateTime EmailSentToCustomerTime {get;set;}

public DateTime CarrerPickupTime {get;set;}

}

class Order

{

public OrderTimes Times;

}

However, this does introduce an additional 12 or 24-bytes of overhead for every
Order object. If you need to pass the OrderTimes object as a whole to various
methods, maybe this makes sense, but why not just pass the reference to the
entire Order object itself? If you have thousands of Order objects being pro-
cessed simultaneously, this can cause more garbage collections to be induced. It
is also an extra memory dereference.

Instead, change OrderTimes to be a struct. Accessing the individual properties
of the OrderTimes struct via a property on Order (order.Times.ReceivedTime)
will not result in a copy of the struct (.NET optimizes that reasonable scenario).
This way, the OrderTimes struct becomes part of the memory layout for the
Order class almost exactly like it was with no substructure and you get to have
better-looking code as well.

The trick here is to treat the fields of the OrderTimes struct just as if they were
fields on the Order object. You do not need to pass around the OrderTimes

struct as an entity in and of itself—it is just an organization mechanism.

Virtual Methods and Sealed Classes

Do not mark methods virtual by default, “just in case.” However, if virtual
methods are necessary for a coherent design in your program, you probably
should not go too far out of your way to remove them.
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Making methods virtual prevents certain optimizations by the JIT compiler,
notably the ability to inline them. Methods can only be inlined if the compiler
knows 100% which method is going to be called. Marking a method as virtual

removes this certainty, though there are other factors, covered in Chapter 3,
that are perhaps more likely to invalidate this optimization.

Closely related to virtual methods is the notion of sealing a class, like this:

public sealed class MyClass {}

A class marked as sealed is declaring that no other classes can derive from it.
In theory, the JIT could use this information to inline more aggressively, but
it does not do so currently. Regardless, you should mark classes as sealed by
default and not make methods virtual unless they need to be. This way, your
code will be able to take advantage of any current as well as theoretical future
improvements in the JIT compiler.

If you are writing a class library that is meant to be used in a wide variety of
situations, especially outside of our organization, you need to be more careful.
In that case, having virtual APIs may be more important than raw perfor-
mance to ensure your library is sufficiently reusable and customizable. But for
code that you change often and is used only internally, go the route of better
performance.

Properties

Be careful with accessing properties. Properties look syntactically like fields,
but underneath they are actually function calls. It is considered good manners
to implement properties in as light-weight manner as possible, but if it were as
simple and cheap as field access, then properties would not exist. They largely
exist so that people can add validation and other extra functionality around
accessing or modifying a field’s value.

If the property access is in a loop, it is possible that the JIT will inline the call,
but it is not guaranteed.

When in doubt, examine the code for the properties you are accessing in performance-
critical areas, and make your decisions accordingly.

290



CLASSES AND STRUCTS

Override Equals and GetHashCode for Structs

An important part of using structs is overriding the Equals and GetHashCode

methods. If you do not, you will get the default versions, which are not at all
good for performance. To get an idea of how bad it is, use an IL viewer and
look at the code for the ValueType.Equals method. It involves reflection over
all the fields in the struct. There is, however, an optimization for blittable types.
A blittable type is one that has the same in-memory representation in man-
aged and unmanaged code. They are limited to the primitive numeric types
(such as Int32, UInt64, for example, but not Decimal, which is not a primi-
tive) and IntPtr/UIntPtr. If a struct is comprised of all blittable types, then
the Equals implementation can do the equivalent of byte-for-byte memory com-
parison across the whole struct. Otherwise, always implement your own Equals

method.

If you just override Equals(object other), then you are still going to have
worse performance than necessary, because that method involves casting and
boxing on value types. Instead, implement Equals(T other), where T is the
type of your struct. This is what the IEquatable<T> interface is for, and all
structs should implement it. During compilation, the compiler will prefer the
more strongly typed version whenever possible. The following code snippet
shows you an example.

struct Vector : IEquatable <Vector >

{

public int X { get; }

public int Y { get; }

public int Z { get; }

public int Magnitude { get; }

public Vector(int x, int y, int z, int magnitude)

{

this.X = x;

this.Y = y;

this.Z = z;

this.Magnitude = magnitude;

}
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public override bool Equals(object obj)

{

if (obj == null)

{

return false;

}

if (obj.GetType () != this.GetType ())

{

return false;

}

return this.Equals (( Vector)obj);

}

public bool Equals(Vector other)

{

return this.X == other.X

&& this.Y == other.Y

&& this.Z == other.Z

&& this.Magnitude == other.Magnitude;

}

public override int GetHashCode ()

{

return X ^ Y ^ Z ^ Magnitude;

}

}

If a type implements IEquatable<T> .NET’s generic collections will detect its
presence and use it to perform more efficient searches and sorts.

You may also want to implement the == and != operators on your value types
and have them call the existing Equals<T> method.

All of these methods should be implemented as optimally as possible. They
should have the minimal number of operations, no duplication, and no memory
allocation. They will be called in many unforeseen circumstances. For large col-
lections, they could be called millions of times per second. Also, GetHashCode
is used in many collections to very quickly narrow down the range of items they
need to check for equality. If the hash code calculation produces too many col-
lisions, then the potentially more expensive Equals method will be called too
frequently.
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If your type is sortable, then you should also implement the IComparable<T>
interface to allow the Sort method of some collection types to automatically use
it.

Even if you never compare structs or put them in collections, I still encourage
you to implement these methods. You will not always know how they will be
used in the future, and the price of the methods is only a few minutes of your
time and a few bytes of IL that will never even get JITted.

It is not as important to override Equals and GetHashCode on classes because
by default they only calculate equality based on their object reference. As long
as that is a reasonable assumption for your objects, you can leave them as the
default implementation.

Thread Safety

Classes should rarely be thread-safe, unless there is some inherent reason they
need to be. This is rare outside of collection classes, and as we will see when we
discuss those, even then you have to consider the question carefully.

For most cases, synchronization should happen at a higher level and the class
itself should be unaware. This provides the most flexibility in class reuse.

One exception is static classes. Since these only have global state, you should
consider making these thread-safe by default unless you have reason not to.

To learn more about thread synchronization, see Chapter 4.

Tuples

The generic System.Tuple class can be used to create simple data structures
without creating explicit, named classes. Tuple is a reference type, which means
it has all the overhead associated with classes. Starting with .NET 4.7 and C#
7, there is a value type version of tuples, System.ValueTuple. This should be
preferred in most cases, but use the same judgment for deciding between any
reference or value type designs, as described earlier.
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var tuple = new ValueTuple <int , string >(1, "Ben");

int id = tuple.Item1;

Along with the new type, you can use some new language syntax to declare tu-
ples:

(int , string) tuple = (1, "Ben");

int id = tuple.Item1;

Instead of using the Item property names, you can now name them:

(int id, string name) tuple = (1, name: "Ben");

int id = tuple.id;

You can use this syntax as method return or parameter types—it is all equiv-
alent to using ValueTuple, and if you look at these values in a debugger, you
will not see the property names you may have used, but just Item1, Item2, etc.

Interface Dispatch

The first time you call a method through an interface, .NET has to figure out
which type and method to make the call on. It will first make a call to a stub
that finds the right method to call for the appropriate object implementing that
interface. Once this happens a few times, the CLR will recognize that the same
concrete type is always being called and this indirect call via the stub is reduced
to a stub of just a handful of assembly instructions that makes a direct call to
the correct method. This group of instructions is called a monomorphic stub
because it knows how to call a method for a single type. This is ideal for situ-
ations where a call site always calls interface methods on the same type every
time.

The monomorphic stub can also detect when it is wrong. If at some point the
call site uses an object of a different type, then eventually the CLR will replace
the stub with another monomorphic stub for the new type.
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If the situation is even more complex with multiple types and less predictabil-
ity (for example, you have an array of an interface type, but there are multiple
concrete types in that array) then the stub will be changed to a polymorphic
stub that uses a hash table to pick which method to call. The table lookup is
fast, but not as fast as the monomorphic stub. Also, this hash table is severely
bounded in size and if you have too many types, you might fall back to the
generic type lookup code from the beginning. This can be very expensive.

The stubs are created per call-site; that is, wherever the methods are called.
Each call-site is updated as needed, independently of one another.

If this becomes a concern for you, you have a couple of options:

1. Avoid calling these objects through the common interface

2. Pick your common base interface and replace it with an abstract base
class instead

This type of problem is not common, but it can hit you if you have a huge type
hierarchy, all implementing a common interface, and you call methods through
that root interface. You would notice this as high, unexplainable CPU usage at
the call site for these methods.

Story

During the design of a large system, we knew we were going
to have potentially thousands of types that would likely all de-
scend from a common type. We knew there would be a couple
of places where we would need to access them from the base
type. Because we had someone on the team who understood
the issues around interface dispatch with this magnitude of
problem size, we chose to use an abstract base class rather than
a root interface instead.

To learn more about interface dispatch see Vance Morrison’s blog entry on the
subject, titled, “Digging into interface calls in the .NET Framework: Stub-based
dispatch.”
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Avoid Boxing

Boxing is the process of wrapping a value type such as a primitive or struct in-
side an object that lives on the heap so that it can be passed to methods that
require object references. Unboxing is getting the original value back out again.

Boxing costs CPU time for object allocation, copying, and casting, but, more
seriously, it results in more pressure on the GC heap. If you are careless about
boxing, it can lead to a significant number of allocations, all of which the GC
will have to handle.

Obvious boxing happens whenever you do things like the following:

int x = 32;

object o = x;

The IL looks like this:

IL_0001: ldc.i4.s 32

IL_0003: stloc.0

IL_0004: ldloc.0

IL_0005: box [mscorlib]System.Int32

IL_000a: stloc.1

This means that it is relatively easy to find most sources of boxing in your code—
just use ILDASM to convert all of your IL to text and do a search.

A very common of way of having accidental boxing is using APIs that take
object or object[] as a parameter. The most well-known of these is String.Format,
or the old style collections which only store object references and should be
avoided completely for this and other reasons (see Chapter 6).

Boxing can also occur when assigning a struct to an interface reference. For ex-
ample:

interface INameable

{

string Name { get; set; }
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}

struct Foo : INameable

{

public string Name { get; set; }

}

void TestBoxing ()

{

Foo foo = new Foo() { Name = "Bar" };

// This boxes!

INameable nameable = foo;

...

}

If you test this out for yourself, be aware that if you do not actually use the
boxed variable then the compiler will optimize out the boxing instruction be-
cause it is never actually touched. As soon as you call a method or otherwise
use the value then the boxing instruction will be present.

Another thing to be aware of when boxing occurs is the result of the following
code:

int val = 13;

object boxedVal = val;

val = 14;

What is the value of boxedVal after this?

Boxing looks just like reference aliasing, but it instead copies the value and
there is no longer any relationship between the two values. In this example, val
changes value to 14, but boxedVal maintains its original value of 13.

You can sometimes catch boxing happening in a CPU profile, but many boxing
calls are inlined so this is not a reliable method of finding it. What will show up
in a CPU profile of excessive boxing is heavy memory allocation through new.

If you do have a lot of boxing of structs and find that you cannot get rid of it,
you should probably just convert the struct to a class, which may end up being
cheaper overall.
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Finally, note that passing a value type by reference is not boxing. Examine the
IL and you will see that no boxing occurs. The address of the value type is sent
to the method.

ref returns and locals

C# 7 introduced some new language syntax that enables easier direct memory
access in safe code. The same benefits could be achieved earlier, with pointer
access to private fields in unsafe code, but the standard way of coding would
usually result in copying values, as we will see later in this section. With ref-
return, you can have the benefits of completely safe code, proper class abstrac-
tion, as well as the performance benefit of direct memory access.

As a simple example, consider a local ref to an existing value:

int value = 13;

ref int refValue = value;

refValue = 14;

After the last line, what is in value? It is 14 because refValue actually refers
to value’s memory location.

This functionality can also be used to get a reference to a class’s private data:

class Vector

{

private int magnitude;

public ref int Magnitude {

get { ref return this.magnitude; } }

}

class Program

{

void TestMagnitude ()

{

Vector v = new Vector;

ref int mag = ref v.Magnitude;

298



REF RETURNS AND LOCALS

mag = 3;

int nonRefMag = v.Magnitude;

mag = 4;

Console.WriteLine($"mag: {mag}");

Console.WriteLine($"nonRefMag: {nonRefMag}");

}

}

What is the output of this program?

4

3

The first assignment sets the underlying value. The assignment to nonRefMag is
interesting. Despite Magnitude being a ref-return property, because it was not
called via ref, ’nonMagRef will just get a copy of the value, just as if Magnitude
were a typical, non-ref property. Thus nonRefMag retains the value it originally
received, despite the underlying class’s memory being changed. Remember that
how you call a method is as important as how the method is declared.

You can also use ref to refer to a specific array location. This example is a
method that zeroes the middle position in an array. The non-ref way of doing
it would look something like this:

private static void ZeroMiddleValue(int[] arr)

{

int midIndex = GetMidIndex(arr);

arr[midIndex] = 0;

}

private static int GetMidIndex(int[] arr)

{

return arr.Length / 2;

}

The ref version looks very similar:
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private static void RefZeroMiddleValue(int[] arr)

{

ref int middle = ref GetRefToMiddle(arr);

middle = 0;

}

private static ref int GetRefToMiddle(int[] arr)

{

return ref arr[arr.Length / 2];

}

With ref-return functionality, you can do previously illegal operations like putting
a method on the left-hand side of an assignment:

GetRefToMiddle(arr) = 0

Since GetRefToMiddle returns a reference, not a value, you can assign to it.

Looking at these simple examples of usage, you may be tempted to say that it
looks unlikely that there is large performance gain. For small one-offs this is
true. The gain will come from repeated reference to a single location in memory,
avoiding array offset math, or avoiding copying values.

A more powerful example is using ref-return to avoid copying struct values
when you cannot use an immutable struct. Consider the following definitions:

struct Point3d

{

public double x;

public double y;

public double z;

public string Name { get; set; }

}

class Vector

{

private Point3d location;

public Point3d Location { get; set; }

public ref Point3d RefLocation
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{ get { return ref this.location; } }

public int Magnitude { get; set; }

}

Suppose you want to change location to be the origin (0,0,0). Without ref-
return, this would mean copying the struct via the Location property, setting
its values to 0, then calling the setter to put it back, like this:

private static void SetVectorToOrigin(Vector vector)

{

Point3d location = vector.Location;

pt.x = 0;

pt.y = 0;

pt.z = 0;

vector.Location = pt;

}

With ref-return you can circumvent this copying:

private static void RefSetVectorToOrigin(Vector vector)

{

ref Point3d location = ref vector.RefLocation;

location.x = 0;

location.y = 0;

location.z = 0;

}

The difference in efficiency will depend on the size of the struct—the bigger it
is, the slower it will take to execute the non-ref version of this method.

The RefReturn project in the accompanying source code for this book contains
a simple benchmark with the above code that has this output:

Benchmarks:

SetVectorToOrigin: 40ms

RefSetVectorToOrigin: 20ms
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If I add just a few more fields to the struct, the difference becomes starker:

Benchmarks:

SetVectorToOrigin: 470ms

RefSetVectorToOrigin: 20ms

Digging into the assembly code, you can see that the inefficient version has in-
structions for copying as well as a method call:

02 E005A8 push esi

02 E005A9 cmp al ,byte ptr [ecx +24h]

02 E005AC lea esi ,[ecx +24h]

02 E005AF mov eax ,dword ptr [esi +18h]

02 E005B2 fldz

02 E005B4 fldz

02 E005B6 fldz

02 E005B8 lea esi ,[ecx +24h]

02 E005BB fxch st(2)

02 E005BD fstp qword ptr [esi]

02 E005BF fstp qword ptr [esi +8]

02 E005C2 fstp qword ptr [esi +10h]

02 E005C5 lea edx ,[esi +18h]

02 E005C8 call 72 BDDCB8

02 E005CD pop esi

02 E005CE ret

While the ref-return version contains little more than value setting and, as a
bonus, is inlined:

02 E005E0 cmp byte ptr [ecx],al

02 E005E2 lea eax ,[ecx +8]

02 E005E5 fldz

02 E005E7 fstp qword ptr [eax]

02 E005E9 fldz

02 E005EB fstp qword ptr [eax +8]

02 E005EE fldz

02 E005F0 fstp qword ptr [eax +10h]

02 E005F3 ret
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There are strict rules for when ref-return functionality can be used:

• You cannot assign the result of a regular (i.e., non-ref-return) method
return value to a ref local variable. (However, ref-return values can be
implicitly copied into non-ref variables.)

• You cannot return a ref of a local variable. The actual memory must per-
sist beyond the local scope to avoid invalid memory access.

• You cannot reassign a ref variable to a new memory location after initial-
ization.

• Struct methods cannot ref-return instance fields.

• You cannot use this functionality with async methods.

You likely will not frequently use this feature, but it is there when you need it,
especially for the situations I described:

• Modifying fields in a property-exposed struct.

• Directly accessing an array location.

• Repeated access to the same memory location.

for vs. foreach

The foreach statement is a very convenient way of iterating through any enu-
merable collection type, from arrays to dictionaries.

You can see the difference in iterating collections using for loops or foreach by
using the MeasureIt tool mentioned in Chapter 1. Using standard for loops is
significantly faster in all the cases. However, if you do your own simple test, you
might notice equivalent performance depending on the scenario. In some cases,
.NET will actually convert simple foreach statements into standard for loops.

Take a look at the ForEachVsFor sample project, which has this code:
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int[] arr = new int [100];

for (int i = 0; i < arr.Length; i++)

{

arr[i] = i;

}

int sum = 0;

foreach (int val in arr)

{

sum += val;

}

sum = 0;

IEnumerable <int > arrEnum = arr;

foreach (int val in arrEnum)

{

sum += val;

}

Once you build this, then decompile it using an IL reflection tool. You will see
that the first foreach is actually compiled as a for loop. The IL looks like this:

// loop start (head: IL_0034)

IL_0024: ldloc.s CS$6$0000
IL_0026: ldloc.s CS$7$0001
IL_0028: ldelem.i4

IL_0029: stloc.3

IL_002a: ldloc.2

IL_002b: ldloc.3

IL_002c: add

IL_002d: stloc.2

IL_002e: ldloc.s CS$7$0001
IL_0030: ldc.i4.1

IL_0031: add

IL_0032: stloc.s CS$7$0001
IL_0034: ldloc.s CS$7$0001
IL_0036: ldloc.s CS$6$0000
IL_0038: ldlen

IL_0039: conv.i4

IL_003a: blt.s IL_0024

// end loop
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There are a lot of stores, loads, adds, and a branch—it is all quite simple. How-
ever, once we cast the array to an IEnumerable<int> and do the same thing,
it gets a lot more expensive:

IL_0043: callvirt instance class

[mscorlib]System.Collections.Generic.IEnumerator ‘1<!0>

class [mscorlib]System.Collections.Generic.IEnumerable ‘1<int32 >

:: GetEnumerator ()

IL_0048: stloc.s CS$5$0002
.try

{

IL_004a: br.s IL_005a

// loop start (head: IL_005a)

IL_004c: ldloc.s CS$5$0002
IL_004e: callvirt instance !0 class [mscorlib]

System.Collections.Generic.IEnumerator ‘1<int32 >

:: get_Current ()

IL_0053: stloc.s val

IL_0055: ldloc.2

IL_0056: ldloc.s val

IL_0058: add

IL_0059: stloc.2

IL_005a: ldloc.s CS$5$0002
IL_005c: callvirt instance bool

[mscorlib]System.Collections.IEnumerator :: MoveNext ()

IL_0061: brtrue.s IL_004c

// end loop

IL_0063: leave.s IL_0071

} // end .try

finally

{

IL_0065: ldloc.s CS$5$0002
IL_0067: brfalse.s IL_0070

IL_0069: ldloc.s CS$5$0002
IL_006b: callvirt instance void

[mscorlib]System.IDisposable :: Dispose ()

IL_0070: endfinally

} // end handler
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We have 4 virtual method calls, a try-finally, and, not shown here, a memory
allocation for the local enumerator variable which tracks the enumeration state.
That is much more expensive than the simple for loop. It uses more CPU and
more memory!

Remember, the underlying data structure is still an array (so a for loop is pos-
sible) but we are obfuscating that by casting to an IEnumerable. The impor-
tant lesson here is the one that was mentioned at the top of the chapter: In-
depth performance optimization will often defy code abstractions. foreach is an
abstraction of a loop, and IEnumerable is an abstraction of a collection. Com-
bined, they dictate behavior that defies the simple optimizations of a for loop
over an array.

Casting

In general, you should avoid casting wherever possible. Casting often indicates
poor class design, but there are times when it is required. It is relatively com-
mon to need to convert between unsigned and signed integers with different
APIs, for example. Casting objects should be much rarer.

Casting objects is never free, but the costs differ dramatically depending on the
relationship of the objects. Casting an object to its parent is relatively cheap.
Casting a parent object to the correct child is significantly more expensive, and
the costs increase with a larger hierarchy. Casting to an interface is more expen-
sive than casting to a concrete type.

What you absolutely must avoid is an invalid cast. This will cause an exception
of type InvalidCastException to be thrown, which will dwarf the cost of the
actual cast by many orders of magnitude.

See the CastingPerf sample project in the accompanying source code which
benchmarks a number of different types of casts. It produces this output on my
computer in one test run:

No cast: 1.00x

Up cast (1 gen): 1.00x
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Up cast (2 gens): 1.00x

Up cast (3 gens): 1.00x

Down cast (1 gen): 1.25x

Down cast (2 gens): 1.37x

Down cast (3 gens): 1.37x

Interface: 2.73x

Invalid Cast: 14934.51x

as (success): 1.01x

as (failure): 2.60x

is (success): 2.00x

is (failure): 1.98x

The is operator is a cast that tests the result and returns a Boolean value.
The as operator is similar to a standard cast, but returns null if the cast fails.
From the results above, you can see this is much faster than throwing an excep-
tion.

Never have this pattern, which performs two casts:

if (a is Foo)

{

Foo f = (Foo)a;

}

Instead, use as to cast and cache the result, then test the return value:

Foo f = a as Foo;

if (f != null)

{

...

}

If you have to test against multiple types, then put the most common type first.
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Note

One annoying cast that I see regularly is when using
MemoryStream.Length, which is a long. Most APIs that use it
are using the reference to the underlying buffer (retrieved from
the MemoryStream.GetBuffer method), an offset, and a length,
which is often an int, thus making a downcast from long nec-
essary. Casts like these can be common and unavoidable.

Note that not all casting is explicit. You can have implicit casting that results
in memory allocations, depending on how the classes are implemented.

P/Invoke

P/Invoke is used to make calls from managed code into unmanaged native meth-
ods. It involves some fixed overhead plus the cost of marshaling the arguments.
Marshaling is the process of converting types from one format to another.

P/Invoke calls involve a bit of internal cleverness to make them work. A rough
outline of the steps looks like this:

1. Adjust stack frame variables.

2. Set current stack frame.

3. Disable GC for the current thread.

4. Execute the target code.

5. Re-enable GC.

6. Check for a currently running GC and stop the thread if necessary.

7. Readjust stack frame variables back to their previous values.
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You can see a simple benchmark of P/Invoke cost vs. a normal managed func-
tion call cost with the MeasureIt program mentioned in Chapter 1. On my com-
puter, a P/Invoke call takes about 6–10 times the amount of time it takes to
call an empty static method. You do not want to call a P/Invoked method in
a tight loop if you have a managed equivalent, and you definitely want to avoid
making multiple transitions between unmanaged and managed code. However, a
single P/Invoke calls is not so expensive as to prohibit it in all cases.

There are a few ways to minimize the cost of making P/Invoke calls:

1. Avoid having a “chatty” interface. Make a single call that can work on a
lot of data, where the time spent processing the data is significantly more
than the fixed overhead of the P/Invoke call.

2. Use blittable types as much as possible. Recall from the discussion about
structs that blittable types are those that have the same binary value in
managed and unmanaged code, mostly numeric and pointer types. These
are the most efficient arguments to pass because the marshaling process is
essentially a memory copy.

3. Avoid calling ANSI versions of Windows APIs. For example, CreateProcess
is actually a macro that resolves to one of two real functions, CreateProcessA
for ANSI strings, and CreateProcessW for Unicode strings. Which version
you get is determined by the compilation settings for the native code. You
want to ensure that you are always calling the Unicode versions of APIs
because all .NET strings are already Unicode, and having a mismatch here
will cause an expensive, possibly lossy, conversion to occur.

4. Do not pin unnecessarily. Primitives are never pinned anyway and the
marshaling layer will automatically pin strings and arrays of primitives.
If you do need to pin something else, keep the object pinned for as short
a duration as possible to. See Chapter 2 for a discussion of how pinning
can negatively impact garbage collection. With pinning, you will have to
balance this need for a short duration with the need to avoid a chatty in-
terface. In all cases, you want the unmanaged code to return as fast as
possible.
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5. If you need to transfer a large amount of data to unmanaged code, con-
sider pinning the buffer and having the native code operate on it directly.
It does pin the buffer in memory, but if the function is fast enough this
may be more efficient than a large copy operation. If you can ensure that
the buffer is in gen 2 or the large object heap, then pinning is much less of
an issues because the GC is unlikely to need to move the object anyway.

6. Decorate the imported method’s parameters with the In and Out attributes.
This will tell the CLR which direction each argument needs to be mar-
shaled. For many types, this can be determined implicitly and you do not
need to explicitly state it, such as for integer types. However, for strings
and arrays, you should explicitly set this to avoid unnecessary marshaling
in a direction you do not need.

Disable Security Checks for Trusted Code

For code you explicitly trust, you can reduce some of the cost of P/Invoke by
disabling some security checks on the P/Invoke method declarations.

[DllImport("kernel32.dll", SetLastError=true)]

[System.Security.SuppressUnmanagedCodeSecurity]

static extern bool GetThreadTimes(IntPtr hThread ,

out long lpCreationTime ,

out long lpExitTime ,

out long lpKernelTime ,

out long lpUserTime );

The SuppressUnmanagedCodeSecurity attribute declares that the method can
run with full trust. This will cause you to receive some Code Analysis (FxCop)
warnings because it is disabling a large part of .NET’s security model. You
should disable this only if all of the following conditions are met:

1. Your application runs only trusted code.

2. You thoroughly sanitize the inputs, or otherwise run in a trusted environ-
ment.
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3. You prevent public APIs from calling the P/Invoke methods

If you can do that, then you can gain some performance, as demonstrated in
this MeasureIt output:

Name Mean

PInvoke: 10 FullTrustCall() (10 call
average) [count=1000 scale=10.0]

6.945

PInvoke: PartialTrustCall() (10 call
average) [count=1000 scale=10.0]

17.778

The method running with full trust can execute about 2.5 times faster.

Delegates

There are two costs associated with use of delegates: construction and invoca-
tion. Invocation, thankfully, is comparable to a normal method call in nearly all
circumstances. But delegates are objects and constructing them can be quite
expensive. You want to pay this cost only once and cache the result. Consider
the following code:

private delegate int MathOp(int x, int y);

private static int Add(int x, int y) { return x + y; }

private static int DoOperation(MathOp op , int x, int y)

{ return op(x, y); }

Which of the following loops is faster?

Option 1:

for (int i = 0; i < 10; i++)

{

DoOperation(Add , 1, 2);

}
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Option 2:

MathOp op = Add;

for (int i = 0; i < 10; i++)

{

DoOperation(op, 1, 2);

}

It looks like Option 2 is only aliasing the Add function with a local delegate
variable, but this actually causes a subtle change in memory allocation behav-
ior! It becomes clear if you look at the IL for the respective loops:

Option 1:

// loop start (head: IL_0020)

IL_0004: ldnull

IL_0005: ldftn int32 DelegateConstruction.Program

::Add(int32 , int32)

IL_000b: newobj instance void DelegateConstruction.Program/MathOp

:: .ctor(object , native int)

IL_0010: ldc.i4.1

IL_0011: ldc.i4.2

IL_0012: call int32 DelegateConstruction.Program

:: DoOperation(

class DelegateConstruction.Program/MathOp ,

int32 , int32)

...

While Option 2 has the same memory allocation, it is outside of the loop:

L_0025: ldnull

IL_0026: ldftn int32 DelegateConstruction.Program

::Add(int32 , int32)

IL_002c: newobj instance void DelegateConstruction.Program/MathOp

:: .ctor(object , native int)

...

// loop start (head: IL_0047)

IL_0036: ldloc.1

IL_0037: ldc.i4.1

IL_0038: ldc.i4.2

IL_0039: call int32 DelegateConstruction.Program
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:: DoOperation(class DelegateConstruction.Program/MathOp ,

int32 , int32)

...

Notice the location of the newobj command has shifted up, above the loop start.
The key to this issue is that delegates are backed by objects that are just like
other objects. This goes for the built-in Func class as well. This means that if
you want to avoid repeated allocation of delegate objects, you must reference
them from a location that is called only once, as in the example above.

There is, however, a way of getting around this in an easy way: lambda expres-
sions.

Consider what happens in this example:

for (int i = 0; i < 10; i++)

{

DoOperation ((x,y) => Add(x,y), 1, 2);

}

Here is the resulting IL code.

IL_004c: ldc.i4.0

IL_004d: stloc.3

IL_004e: br.s IL_007f

// loop start (head: IL_007f)

IL_0050: ldsfld class DelegateConstruction.Program/MathOp

DelegateConstruction.Program/’<>c’::’<>9__3_0 ’

IL_0055: dup

IL_0056: brtrue.s IL_006f

IL_0058: pop

IL_0059: ldsfld class DelegateConstruction.Program/’<>c’

DelegateConstruction.Program/’<>c’::’<>9’

IL_005e: ldftn instance int32

DelegateConstruction.Program/’<>c’

::’<Main >b__3_0 ’(int32 , int32)

IL_0064: newobj instance void

DelegateConstruction.Program/MathOp

:: .ctor(object , native int)

IL_0069: dup
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IL_006a: stsfld class DelegateConstruction.Program/MathOp

DelegateConstruction.Program/’<>c’::’<>9__3_0 ’

IL_006f: ldc.i4.1

IL_0070: ldc.i4.2

IL_0071: call int32 DelegateConstruction.Program

:: DoOperation(class DelegateConstruction.Program/MathOp ,

int32 , int32)

...

// end loop

Notice that the delegate allocation is back inside the loop. However, look at line
IL 0056 and you will see a brtrue instruction. This line is checking for the ex-
istence of a cached delegate. If it exists, then it will skip over the allocation di-
rectly to performing the operation. The loop still has extra instructions in it,
but this is better than allocating on every loop iteration.

Note that the following syntax is equivalent to the previous example:

for (int i = 0; i < 10; i++)

{

DoOperation ((x,y) => { return Add(x, y); }, 1, 2);

}

These examples can be found in the DelegateConstruction sample project.

Exceptions

In .NET, putting a try block around code is cheap, but exceptions are very ex-
pensive to throw. This is largely because of the rich state that .NET exceptions
contain, including doing a full stack walk. Exceptions must be reserved for truly
exceptional situations, when raw performance ceases to be important.

Never rely on exception handling to catch simple error cases that would be more
efficiently handled with non-exception code. It is much better to have validation
code that can make simple checks and returns errors instead of throwing excep-
tions. This means that you must pay careful attention to your API design as
you structure your program to efficiently handle errors.
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To see the devastating effects on performance that throwing exceptions can
have, see the ExceptionCost sample project. Its output should be similar to the
following:

Empty Method: 1x

Exception (depth = 1): 8525.1x

Exception (depth = 2): 8889.1x

Exception (depth = 3): 8953.2x

Exception (depth = 4): 9261.9x

Exception (depth = 5): 11025.2x

Exception (depth = 6): 12732.8x

Exception (depth = 7): 10853.4x

Exception (depth = 8): 10337.8x

Exception (depth = 9): 11216.2x

Exception (depth = 10): 10983.8x

Exception (catchlist, depth = 1): 9021.9x

Exception (catchlist, depth = 2): 9475.9x

Exception (catchlist, depth = 3): 9406.7x

Exception (catchlist, depth = 4): 9680.5x

Exception (catchlist, depth = 5): 9884.9x

Exception (catchlist, depth = 6): 10114.6x

Exception (catchlist, depth = 7): 10530.2x

Exception (catchlist, depth = 8): 10557.0x

Exception (catchlist, depth = 9): 11444.0x

Exception (catchlist, depth = 10): 11256.9x

This demonstrates three simple facts:

1. A method that throws an exception is thousands of times slower than a
simple empty method.

2. The deeper the stack for the thrown exception, the slower it gets (though
it is already so slow, it does not matter).

3. Having multiple catch statements has a slight but perceptible effect as
the right one needs to be found.
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While catching exceptions may be cheap, accessing the StackTrace property
on an Exception object can be very expensive as it reconstructs the stack from
pointers and translates it into readable text. In a high-performance application,
you may want to make logging of these stack traces optional through configura-
tion and use it only when needed. Note that rethrowing an existing exception
from an exception handler is the same expense as throwing a new exception.

To reiterate: exceptions should be truly exceptional. Using them as a matter of
course can destroy your performance.

dynamic

It should probably go without saying, but to make it explicit: any code using
the dynamic keyword, or the Dynamic Language Runtime (DLR) is not going to
be highly optimized. Performance tuning is often about stripping away abstrac-
tions, but using the DLR is adding one huge abstraction layer. It has its place,
certainly, but a fast system is not one of them.

When you use dynamic, what looks like straightforward code is anything but.
Take a simple, admittedly contrived example:

static void Main(string [] args)

{

int a = 13;

int b = 14;

int c = a + b;

Console.WriteLine(c);

}

The IL for this is equally straightforward:

.method private hidebysig static

void Main (

string [] args

) cil managed
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{

// Method begins at RVA 0x2050

// Code size 17 (0x11)

.maxstack 2

.entrypoint

.locals init (

[0] int32 a,

[1] int32 b,

[2] int32 c

)

IL_0000: ldc.i4.s 13

IL_0002: stloc.0

IL_0003: ldc.i4.s 14

IL_0005: stloc.1

IL_0006: ldloc.0

IL_0007: ldloc.1

IL_0008: add

IL_0009: stloc.2

IL_000a: ldloc.2

IL_000b: call void [mscorlib]System.Console :: WriteLine(int32)

IL_0010: ret

} // end of method Program ::Main

Now just make those ints dynamic:

static void Main(string [] args)

{

dynamic a = 13;

dynamic b = 14;

dynamic c = a + b;

Console.WriteLine(c);

}

For the sake of conserving print space, I will skip showing the IL here, but this
is what it looks like when you convert it back to C#:

private static void Main(string [] args)

{
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object a = 13;

object b = 14;

if (Program.<Main >o__SiteContainer0.<>p__Site1 == null)

{

Program.<Main >o__SiteContainer0.<>p__Site1 =

CallSite <Func <CallSite , object , object , object >>.

Create(Binder.BinaryOperation(CSharpBinderFlags.None ,

ExpressionType.Add ,

typeof(Program),

new CSharpArgumentInfo []

{

CSharpArgumentInfo.Create(CSharpArgumentInfoFlags.None ,

null),

CSharpArgumentInfo.Create(CSharpArgumentInfoFlags.None ,

null)

}));

}

object c = Program.<Main >o__SiteContainer0.

<>p__Site1.Target(Program.<Main >o__SiteContainer0.<>p__Site1 ,

a, b);

if (Program.<Main >o__SiteContainer0.<>p__Site2 == null)

{

Program.<Main >o__SiteContainer0.<>p__Site2 =

CallSite <Action <CallSite , Type , object >>.

Create(Binder.InvokeMember(

CSharpBinderFlags.ResultDiscarded ,

"WriteLine",

null ,

typeof(Program),

new CSharpArgumentInfo []

{

CSharpArgumentInfo.Create(

CSharpArgumentInfoFlags.UseCompileTimeType |

CSharpArgumentInfoFlags.IsStaticType ,

null),

CSharpArgumentInfo.Create(CSharpArgumentInfoFlags.None ,

null)

}));

}

Program.<Main >o__SiteContainer0.<>p__Site2.Target(

Program.<Main >o__SiteContainer0.<>p__Site2 ,

typeof(Console), c);

}
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Even the call to WriteLine is not straightforward. From simple, straightfor-
ward code, it has gone to a mishmash of memory allocations, delegates, dy-
namic method invocation, and these strange CallSite objects. A CallSite is
how the DLR replaces standard method calls with a dynamically typed call. It
wraps a sophisticated cache to avoid needing to do extensive reflection on every
single method call. It is still expensive, however.

The JIT statistics are predictable:

Version JIT Time IL Size Native Size

int 0.5ms 17 bytes 25 bytes
dynamic 10.9ms 209 bytes 389 bytes

I do not mean to dump too much on the DLR. It is a perfectly fine framework
for rapid development and scripting. It opens up great possibilities for interfac-
ing between dynamic languages and .NET, but it is not fast.

Reflection

Reflection is the process of programmatically iterating through loaded types
and examining their metadata. It can also involve doing this to a dynamically
loaded .NET assembly during runtime and executing methods on the found
types. This is not a fast process under any circumstance. A .NET assembly’s
metadata is mostly organized for the purposes of loading, debugging, and offline
tool access, not for runtime efficiency.

Getting information about all the types in an assembly is generally efficient—
it is just static metadata hanging around your process anyway. For example,
here is some code that iterates through all types in the executing assembly and
prints member method names:

foreach(var type in Assembly.GetExecutingAssembly (). GetTypes ())

{

Console.WriteLine(type.Name);

foreach(var method in type.GetMethods ())
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{

Console.WriteLine("\t" + method.Name);

}

}

It becomes less efficient as you start to dynamically allocate and execute code
from that metadata. To demonstrate how reflection generally works in this
scenario, here is some simple code from the ReflectionExe sample project that
loads an “extension” assembly dynamically:

var assembly = Assembly.Load(extensionFile );

var types = assembly.GetTypes ();

Type extensionType = null;

foreach (var type in types)

{

var interfaceType = type.GetInterface("IExtension");

if (interfaceType != null)

{

extensionType = type;

break;

}

}

object extensionObject = null;

if (extensionType != null)

{

extensionObject = Activator.CreateInstance(extensionType );

}

At this point, there are two options we can follow to execute the code in our
extension. To stay with pure reflection, we can retrieve the MethodInfo object
for the method we want to execute and then invoke it:

MethodInfo executeMethod = extensionType.GetMethod("Execute");

executeMethod.Invoke(extensionObject , new object [] { 1, 2 });

This is painfully slow, about 100 times slower than casting the object to an in-
terface and executing it directly:
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IExtension extensionViaInterface = extensionObject as IExtension;

extensionViaInterface.Execute(1, 2);

If you can, you always want to execute your code this way rather than relying
on the raw MethodInfo.Invoke technique. If a common interface is not possi-
ble, then see the next section on generating code to execute dynamically loaded
assemblies much faster than reflection.

Code Generation

If you find yourself doing anything with dynamically loaded types (e.g., an ex-
tension or plugin model), then you need to carefully measure your performance
when interacting with those types. Ideally, you can interact with those types via
a common interface and avoid most of the issues with dynamically loaded code.
This approach is described in Chapter 5 when discussing reflection. If that ap-
proach is not possible, use this section to get around the performance problems
of invoking dynamically loaded code.

The .NET Framework supports dynamic type allocation and method invoca-
tion with the Activator.CreateInstance and MethodInfo.Invoke methods,
respectively. Here is an example that uses both:

Assembly assembly = Assembly.Load("Extension.dll");

Type type = assembly.GetType("DynamicLoadExtension.Extension");

object instance = Activator.CreateInstance(type);

MethodInfo methodInfo = type.GetMethod("DoWork");

bool result = (bool)methodInfo.Invoke(instance , new object []

{ argument });

If you do this only occasionally, then it is not a big deal, but if you need to allo-
cate a lot of dynamically loaded objects or invoke many dynamic function calls,
these functions could become a severe bottleneck. Activator.CreateInstance
not only uses significant CPU, but it can cause unnecessary allocations, which
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put extra pressure on the garbage collector. There is also potential boxing that
will occur if you use value types in either the function’s parameters or return
value (as the example above does).

If possible, try to hide these invocations behind an interface known both to the
extension and the execution program, as described in the previous section. If
that does not work, code generation may be an appropriate option. Thankfully,
generating code to accomplish the same thing is quite easy.

Template Creation

To figure out what code to generate, use a template as an example to generate
the IL for you to mimic. For an example, see the DynamicLoadExtension and
DynamicLoadExecutor sample projects. DynamicLoadExecutor loads the exten-
sion dynamically and then executes DoWork. The DynamicLoadExecutor project
ensures that DynamicLoadExtension.dll is in the right place with a post-build
step and a solution build dependency configuration rather than project-level de-
pendencies to ensure that code is indeed dynamically loaded and executed.

Start with creating a new extension object. To create a template, first under-
stand what you need to accomplish. You need a method with no parameters
that returns an instance of the type we need. Your program will not know about
the Extension type, so it will just return it as an object. That method looks
like this:

object CreateNewExtensionTemplate ()

{

return new DynamicLoadExtension.Extension ();

}

Take a peek at the IL and it will look like this:

IL_0000: newobj instance void

[DynamicLoadExtension]DynamicLoadExtension.Extension

::.ctor()

IL_0005: ret
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Delegate Creation

You can now create an instance of the System.Reflection.Emit.DynamicMethod

type, programmatically add some IL instructions to it, and assign it to a dele-
gate which you can then reuse to generate new Extension objects at will.

private static T GenerateNewObjDelegate <T>(Type type)

where T:class

{

// Create a new , parameterless (specified

// by Type.EmptyTypes) dynamic method.

var dynamicMethod = new DynamicMethod("Ctor_" + type.FullName ,

type ,

Type.EmptyTypes ,

true);

var ilGenerator = dynamicMethod.GetILGenerator ();

// Look up the constructor info for the

// type we want to create

var ctorInfo = type.GetConstructor(Type.EmptyTypes );

if (ctorInfo != null)

{

ilGenerator.Emit(OpCodes.Newobj , ctorInfo );

ilGenerator.Emit(OpCodes.Ret);

object del = dynamicMethod.CreateDelegate(typeof(T));

return (T)del;

}

return null;

}

You will notice that the emitted IL corresponds exactly to our template method.

To use this, you need to load the extension assembly, retrieve the appropriate
type, and pass it to the generator method.

Type type = assembly.GetType("DynamicLoadExtension.Extension");

Func <object > creationDel =

GenerateNewObjDelegate <Func <object >>(type);

object extensionObj = creationDel ();
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Once the delegate is constructed you can cache it for reuse (perhaps keyed by
the Type object, or whatever scheme is appropriate for your application).

Method Arguments

You can use the exact same trick to generate the call to the DoWork method.
It is only a little more complicated due to a cast and the method arguments.
IL is a stack-based language so arguments to functions must be pushed on to
the stack in the correct order before a function call. The first argument for an
instance method call must be the method’s hidden this parameter that the ob-
ject is operating on. Note that just because IL uses a stack exclusively, it does
not have anything to do with how the JIT compiler will transform these func-
tion calls to assembly code, which often uses processor registers to hold function
arguments.

As with object creation, first create a template method to use as a basis for the
IL. Since we will have to call this method with just an object parameter (that
is all we will have in our program), the function parameters specify the exten-
sion as just an object. This means we will have to cast it to the right type be-
fore calling DoWork. In the template, we have hard-coded type information, but
in the generator we can get the type information programmatically.

static bool CallMethodTemplate(object extensionObj ,

string argument)

{

var extension = (DynamicLoadExtension.Extension)extensionObj;

return extension.DoWork(argument );

}

The resulting IL for this template looks like:

.locals init (

[0] class [DynamicLoadExtension]DynamicLoadExtension.Extension

extension

)

IL_0000: ldarg.0

IL_0001: castclass
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[DynamicLoadExtension]DynamicLoadExtension.Extension

IL_0006: stloc.0

IL_0007: ldloc.0

IL_0008: ldarg.1

IL_0009: callvirt instance bool

[DynamicLoadExtension]DynamicLoadExtension.Extension

:: DoWork(string)

IL_000e: ret

Notice that there is a local variable declared. This holds the result of the cast.
We will see later that it can be optimized away. This IL leads to a straightfor-
ward translation into a DynamicMethod:

private static T GenerateMethodCallDelegate <T>(

MethodInfo methodInfo ,

Type extensionType ,

Type returnType ,

Type[] parameterTypes) where T : class

{

var dynamicMethod = new DynamicMethod(

"Invoke_" + methodInfo.Name ,

returnType ,

parameterTypes ,

true);

var ilGenerator = dynamicMethod.GetILGenerator ();

ilGenerator.DeclareLocal(extensionType );

// object ’s this parameter

ilGenerator.Emit(OpCodes.Ldarg_0 );

// cast it to the correct type

ilGenerator.Emit(OpCodes.Castclass , extensionType );

// actual method argument

ilGenerator.Emit(OpCodes.Stloc_0 );

ilGenerator.Emit(OpCodes.Ldloc_0 );

ilGenerator.Emit(OpCodes.Ldarg_1 );

ilGenerator.EmitCall(OpCodes.Callvirt , methodInfo , null);

ilGenerator.Emit(OpCodes.Ret);

object del = dynamicMethod.CreateDelegate(typeof(T));

return (T)del;

}
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To generate the dynamic method, we need the MethodInfo, looked up from the
extension’s Type object. We also need the Type of the return object and the
Type objects of all the parameters to the method, including the implicit this
parameter (which is the same as extensionType).

To use our delegate, we just need to call it like this:

Func <object , string , bool > doWorkDel =

GenerateMethodCallDelegate <

Func <object , string , bool >>(

methodInfo , type , typeof(bool),

new Type[]

{ typeof(object), typeof(string) });

bool result = doWorkDel(extension , argument );

Optimization

This method works perfectly, but look closely at what it is doing and recall the
stack-based nature of IL instructions. Here is how this method works:

1. Declare local variable

2. Push arg0 (the this pointer) onto the stack (Ldarg 0)

3. Cast arg0 to the right type and push the result onto the stack (Castclass)

4. Pop the top of the stack and store it in the local variable (Stloc 0)

5. Push the local variable onto the stack (Ldloc 0)

6. Push arg1 (the string argument) onto the stack (Ldarg 1)

7. Call the DoWork method (Callvirt)

8. Return
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There is some glaring redundancy in there, specifically with the local variable.
We have the casted object on the stack, we pop it off then push it right back
on. We could optimize this IL by just removing everything having to do with
the local variable. It is possible that the JIT compiler would optimize this away
for us anyway, but doing the optimization does not hurt, and could help if we
have hundreds or thousands dynamic methods, all of which will need to be JIT-
ted.

The other optimization is to recognize that the callvirt opcode can be changed
to a simpler call opcode because we know there is no virtual method here.
Now our IL looks like this:

var ilGenerator = dynamicMethod.GetILGenerator ();

// object ’s this parameter

ilGenerator.Emit(OpCodes.Ldarg_0 );

// cast it to the correct type

ilGenerator.Emit(OpCodes.Castclass , extensionType );

// actual method argument

ilGenerator.Emit(OpCodes.Ldarg_1 );

ilGenerator.EmitCall(OpCodes.Call , methodInfo , null);

ilGenerator.Emit(OpCodes.Ret);

Wrapping Up

So how is performance with our generated code? Here is one test run:

==CREATE INSTANCE==

Direct ctor: 1.0x

Activator.CreateInstance: 14.6x

Codegen: 3.0x

==METHOD INVOKE==

Direct method: 1.0x

MethodInfo.Invoke: 17.5x

Codegen: 1.3x
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Using direct method calls as a baseline, you can see that the reflection meth-
ods are much worse. Our generated code does not quite bring it back, but it is
close. These numbers are for a function call that does not actually do anything,
so they represent pure overhead of the function call, which is not a very realistic
situation. If I add some minimal work (string parsing and a square root calcula-
tion), the numbers change a little:

==CREATE INSTANCE==

Direct ctor: 1.0x

Activator.CreateInstance: 9.3x

Codegen: 2.0x

==METHOD INVOKE==

Direct method: 1.0x

MethodInfo.Invoke: 3.0x

Codegen: 1.0x

In the end, this demonstrates that if you rely on Activator.CreateInstance

or MethodInfo.Invoke, you can significantly benefit from some code generation.

Story

I have worked on one project where these techniques reduced
the CPU overhead of invoking dynamically loaded code from
over 10% to something more like 0.1%.

You can use code generation for other things as well. If your application does
a lot of string interpretation or has a state machine of any kind, this is a good
candidate for code generation. .NET itself does this with regular expressions
and XML serialization.
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Preprocessing

If part of your application is doing something that is absolutely critical to per-
formance, make sure it is not doing anything extraneous, or wasting time pro-
cessing things that could be done beforehand. If data needs to be transformed
before it is useful during runtime, make sure that as much of that transforma-
tion happens beforehand, even in an offline process if possible.

In other words, if something can be preprocessed, then it must be preprocessed.
It can take some creativity and out-of-the-box thinking to figure out what pro-
cessing can be moved offline, but the effort is often worth it. From a perfor-
mance perspective, it is a form of 100% optimization by removing the code com-
pletely.

Investigating Performance Issues

Each of the topics in this chapter requires a different approach to performance
You can use the tools you already know from earlier chapters. CPU profiles will
reveal expensive Equals methods, poor loop iteration, bad interop marshaling
performance, and other inefficient areas.

Memory traces will show you boxing as object allocations and a general .NET
event trace will show you where exceptions are being thrown, even if they are
being caught and handled.

Performance Counters

The .NET CLR Interop category contains the following counters:

• # of CCWs: The number of COM-callable wrappers, or number of man-
aged objects referred to by unmanaged COM objects.
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• # of marshalling: Number of times arguments and return values have
been marshaled by a P/Invoke stub. If the stub gets inlined (for very
cheap calls), this value is not incremented. This is a good metric to track
for how busy your calls to P/Invoke code are.

• # of Stubs: Number of stubs created by the JIT for marshaling arguments
to P/Invoke or COM.

ETW Events

• ExceptionThrown V1: An exception has been thrown. It does not mat-
ter if this exception is handled or not. Fields include:

◦ Exception Type: Type of the exception.

◦ Exception Message: Message property from the exception object.

◦ EIPCodeThrow: Instruction pointer of throw site.

◦ ExceptionHR: HRESULT of exception.

◦ ExceptionFlags

· 0x01: Has inner exception.

· 0x02: Is nested exception.

· 0x04: Is rethrown exception.

· 0x08: Is a corrupted state exception.

· 0x10: Is a CLS compliant exception.

Finding Boxing Instructions

It is fairly easy to scan your code for boxing because there is a specific IL in-
struction called box. To find it in a single method or class, just use one of the
many IL decompilers available and select the IL view.

If you want to detect boxing in an entire assembly it is easier to use ILDASM,
which ships with the Windows SDK, with its flexible command-line options.

This example analyzes Boxing.exe and outputs the IL code to output.txt

330



INVESTIGATING PERFORMANCE ISSUES

ildasm.exe /out=output.txt Boxing.exe

Take a look at the Boxing sample project, which demonstrates a few different
ways boxing can occur. If you run ILDASM on Boxing.exe, you should see out-
put similar to the following:

.method private hidebysig static void Main(string [] args)

cil managed

{

.entrypoint

// Code size 98 (0x62)

.maxstack 3

.locals init ([0] int32 val ,

[1] object boxedVal ,

[2] valuetype Boxing.Program/Foo foo ,

[3] class Boxing.Program/INameable nameable ,

[4] int32 result ,

[5] valuetype Boxing.Program/Foo ’<>g__initLocal0 ’)

IL_0000: ldc.i4.s 13

IL_0002: stloc.0

IL_0003: ldloc.0

IL_0004: box [mscorlib]System.Int32

IL_0009: stloc.1

IL_000a: ldc.i4.s 14

IL_000c: stloc.0

IL_000d: ldstr "val: {0}, boxedVal :{1}"

IL_0012: ldloc.0

IL_0013: box [mscorlib]System.Int32

IL_0018: ldloc.1

IL_0019: call string [mscorlib]System.String :: Format(string ,

object ,

object)

IL_001e: pop

IL_001f: ldstr "Number of processes on machine: {0}"

IL_0024: call class [System]System.Diagnostics.Process []

[System]System.Diagnostics.Process :: GetProcesses ()

IL_0029: ldlen

IL_002a: conv.i4

IL_002b: box [mscorlib]System.Int32

IL_0030: call string [mscorlib]System.String :: Format(string ,

object)

IL_0035: pop

331



CHAPTER 5. GENERAL CODING AND CLASS DESIGN

IL_0036: ldloca.s ’<>g__initLocal0 ’

IL_0038: initobj Boxing.Program/Foo

IL_003e: ldloca.s ’<>g__initLocal0 ’

IL_0040: ldstr "Bar"

IL_0045: call instance void Boxing.Program/Foo

:: set_Name(string)

IL_004a: ldloc.s ’<>g__initLocal0 ’

IL_004c: stloc.2

IL_004d: ldloc.2

IL_004e: box Boxing.Program/Foo

IL_0053: stloc.3

IL_0054: ldloc.3

IL_0055: call void Boxing.Program :: UseItem(

class Boxing.Program/INameable)

IL_005a: ldloca.s result

IL_005c: call void Boxing.Program :: GetIntByRef(int32&)

IL_0061: ret

} // end of method Program ::Main

You can also discover boxing indirectly via PerfView. With a CPU trace, you
can find excessive calling of the JIT new function.

Figure 5.1. Boxing will show up in a CPU trace under the JIT New method,
which is the standard memory allocation method.

It is a little more obvious if you look at a memory allocation trace because you
know that value types and primitives should not require a memory allocation at
all.
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Figure 5.2. You can see in this trace that the Int32 is being allocated via new,
which should not feel right.

More directly, you can find any boxed object on the heap itself using CLR MD:

private static void PrintBoxedObjects(ClrRuntime clr)

{

foreach (var obj in clr.Heap.EnumerateObjects ())

{

if (obj.IsBoxed)

{

Console.WriteLine(

$"0x{obj.Address:x} - {obj.Type.Name}");

}

}

}

Discovering First-Chance Exceptions

A first-chance exception is debugger-speak for an exception that is being sur-
faced before any possible exception-handlers have been discovered or called. A
second-chance exception is one that is surfaced after handlers have been searched
for in vain. A second-chance exception will likely crash the process.
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WinDbg will break on second-chance exceptions by default, and you can control
whether it breaks on first-chance exceptions with the sx command. To disable
first-chance handling of CLR exceptions:

sxd clr

To re-enable them:

sxe clr

PerfView can easily show you which exceptions are being thrown, regardless of
whether they are caught or not.

1. In PerfView, collect .NET events. The default settings are OK, but CPU
is not necessary, so uncheck it if you need to profile for more than a few
minutes.

2. When collection is complete, double-click on the “Exception Stacks” node.

3. Select the desired process from the list.

4. The Name view will show a list of the top exceptions. The CallTree view
will show the stack for the currently selected exception.
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Figure 5.3. PerfView makes finding where exceptions are coming from trivially
easy.

Summary

Remember that in-depth performance optimizations will defy code abstractions.
You need to understand how your code will be translated to IL, assembly code,
and hardware operations. Take time to understand each of these layers.

Use a struct instead of a class when the data is relatively small, you want min-
imal overhead, or you are going to use them in arrays and want optimal mem-
ory locality. Consider making structs immutable and always implement Equals,
GetHashCode, and IEquatable<T> on them. Avoid boxing of value types and
primitives by guarding against assignment to object references.

Use ref-return for safe direct memory access to fields.

Keep iteration fast by not casting collections to IEnumerable. Avoid casting in
general, whenever possible, especially instances that could result in an excep-
tion.

Minimize the number of P/Invoke calls by sending as much data per call as pos-
sible. Keep memory pinned as briefly as possible.

If you find yourself needing to make heavy use of Activator.CreateInstance
or MethodInfo.Invoke, consider code generation instead.
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People and Blogs

In addition to the resources mentioned above, there are a number of useful peo-
ple to follow, whether they write on their own blog or in articles for various
publications.

• .NET Framework Blog: Announcements, news, discussion, and in-depth
articles. http://blogs.msdn.com/b/dotnet/.

• Maoni Stephens: CLR developer and GC expert. Her blog at http://blogs.msdn.com/
b/maoni/ is updated infrequently, but there is a lot of useful information
there and important announcements occasionally show up.

• Vance Morrison: .NET Performance Architect. Author of PerfView tool,
MeasureIt, and numerous articles and presentations on .NET performance.
Blogs at http://blogs.msdn.com/b/vancem/.

• Matt Warren: .NET performance enthusiast, Microsoft MVP, blogger, and
contributor to many .NET open source projects, including BenchmarkDot-
Net. http://http://mattwarren.org/

• Brendan Gregg: http://www.brendangregg.com/. Not a .NET guy, but
there is a ton of useful performance information here.

• MSDN Magazine: http://msdn.microsoft.com/magazine. There are lot of
great articles going into depth about CLR internals.
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